3514 independent reflections

 $R_{\rm int} = 0.020$

2464 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-[(Z)-(4-Diethylamino-6-oxocyclohexa-2,4-dien-1-ylidene)methylamino]benzoic acid

M. T. Swamy,^a B. Narayana,^b H. S. Yathirajan,^c B. K. Sarojini^d and Maciej Kubicki^e*

^aDepartment of Chemistry, Sambhram Institute of Technology, Bangalore 560 098, India, ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, ^cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^dDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India, and ^eDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland Correspondence e-mail: mkubicki@amu.edu.pl

Received 5 November 2007: accepted 29 November 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.124; data-to-parameter ratio = 12.4.

The title compound, C₁₈H₂₀N₂O₃, crystallizes as the keto tautomer, unlike the vast majority of similar structures that have been reported that contain the hydroxy tautomer. There are two strong hydrogen bonds in the crystal structure, both accepted by the same carbonyl group: one intramolecular N- $H \cdots O$ and one intermolecular $O - H \cdots O$. As a result, the carbonyl C=O distance is long, at 1.310 (2) Å, which may suggest the molecule has a significant zwitterionic character. The dihedral angle between the benzene ring planes is 15.05 (7)°. As a result of the intramolecular hydrogen bond, the bridging C-C=N-C group is almost coplanar with the benzene ring that has the diethylamino substituent [dihedral angle 2.35 (15)°].

Related literature

For related structures, see: Büyükgüngör et al. (2007); Odabaşoğlu et al. (2007); Yathirajan et al. (2007). For biological applications, see Hodnett & Dunn (1970); Misra et al. (1981); Agarwal et al. (1983); Varma et al. (1986); Singh & Dash (1988). For related literature, see: Allen (2002).

Experimental

Crystal data

V = 1579.0 (3) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.09 \text{ mm}^{-1}$
T = 295 (1) K
$0.3 \times 0.2 \times 0.2 \text{ mm}$

Data collection

KUMA KM4CCD diffractometer Absorption correction: none 12993 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of
$vR(F^2) = 0.124$	independent and constrained
5 = 0.98	refinement
514 reflections	$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$
283 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N7-H7···O10	0.91 (2)	1.81 (2)	2.578 (2)	140 (2)
$O1A2 - H1A2 \cdots O10^{i}$	1.07 (3)	1.40 (3)	2.467 (1)	173 (2)
$C5-H5\cdots O1A1^{ii}$	0.98(2)	2.48 (2)	3.449 (2)	174 (2)
C8−H8···O1A1 ⁱⁱⁱ	0.96(2)	2.63 (2)	3.436 (2)	142 (1)
$C11 - H11 \cdots O1A2^{iv}$	0.98(2)	2.60(2)	3.244 (2)	124 (1)
$C16-H16A\cdots O1A1^{v}$	1.00 (2)	2.60 (2)	3.570 (2)	163 (1)
Symmetry codes: (i) x, y -	-1. z; (ii) $-x +$	$\frac{5}{2}$, $v + \frac{1}{2}$, $-7 + \frac{1}{2}$	$\frac{5}{5}$: (iii) $-x + 2$	$-v_{z} - z + 2$: (iv)

 $x, y + 1, z; (v) x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}.$

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1989); software used to prepare material for publication: SHELXL97and WinGX (Farrugia, 1999).

MTS thanks Sambhram Institute of Technology for the research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2063).

References

Agarwal, R., Chaudhary, K. C. & Misra, V. S. (1983). Indian J. Chem. 22B, 308-310.

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Büyükgüngör, O., Odabasoğlu, M., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, 01996-01998.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768-770.
- Misra, V. S., Singh, S., Agarwal, R. & Chaudhary, K. C. (1981). J. Chem. Soc. Pak. 3, 209-213.
- Odabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, 01916-01918.
- Oxford Diffraction (2006). CrystAlisCCD (Version 1.171.29.9) and CrysAlis RED (Version 1.171.29.9). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1989). XP. Release 3.4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.

- Varma, R. S., Prakash, R., Khan, M. M. & Ali, A. (1986). Indian Drugs, 23, 345–349.
- Yathirajan, H. S., Vijesh, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, 0936–0938.

Acta Cryst. (2008). E64, 0163-0164 [doi:10.1107/S1600536807064446]

3-[(Z)-(4-Diethylamino-6-oxocyclohexa-2,4-dien-1-ylidene)methylamino]benzoic acid

M. T. Swamy, B. Narayana, H. S. Yathirajan, B. K. Sarojini and M. Kubicki

Comment

Schiff bases are used as substrates in the preparation of number of industrial and biologically active compounds *via* ring closure, cycloaddition and replacement reactions. Some Schiff base derivatives were reported to possess antimicrobial, anti-inflammatory and central nervous system activities. Moreover, Schiff bases are also known to have biological activities such as antimicrobial, antifungal, antitumor and as herbicides (*e.g.* Hodnett *et al.*, 1970, Singh & Dash, 1988, Varma *et al.*, (1986)). In the course of our studies of Schiff bases (*e.g.* Büyükgüngör *et al.*, 2007; Odabaşoğlu *et al.*, 2007; Yathirajan *et al.*, 2007), the title compound, $C_{18}H_{20}N_2O_3$ was synthesized and its crystal structure is reported.

The title compound crystallizes as the keto-tautomer (Fig. 1), unlike the majority of the similar compounds. In the CSD (Allen, 2002) the hydroxy tautomers were found in 218 compounds while the keto ones only in 17 compounds (Version Nov. 2006, updates up to August 2007; only organic compounds). In this case the presence of the certain tautomer is proven by the succesful location and refinement of the hydrogen atom bonded to N7 nitrogen atom (Fig. 2a). Short and relatively linear intramolecular N—H···O hydrogen bond forms an almost planar (maximum deviation 0.017 (1) Å) six-membered ring. The same O10 oxygen atom which accepts the intramolecular hydrogen bond is involved in a very short (O···O distance is 2.467 (1) Å) intermolecular O—H···O hydrogen bond. As a result the C10—O10 bond of 1.310 (2)Å is significantly longer than a typical C=O double bond. CSD search results show that such elongation is typical for similar compounds, the mean C—O distance being 1.348 (17)Å for hydroxy tautomers, but it may also be as large as 1.299 (17)Å also for the keto-tautomers. Together with the observation of bond lengths around N7 atom this implies some degree of zwitterionic character of the molecule, with partial positive charge at N7—H7 group and negative at O10 atom. These perturbations disturb also the benzene ring. The ring A (C1 - C6) is closer to planarity than the ring B (C9 - C14). Maximum deviations from the least-squares planes are 0.0103 (11)Å for ring A and 0.0219 (12)Å for ring B. Also the bond lengths and angles are much more uniform within the ring A than in ring B.

The conformation of the molecule is described by the dihedral angles between benzene ring planes of 15.05 (7)°. As a result of the intramolecular hydrogen bond, the bridging C—C=N—C group is almost coplanar with the ring B (dihedral angle 2.35 (15)°). The COO group is significantly, by 21.73 (10)°, twisted with respect to its parent ring's plane. On the other end of the molecule, the C—N—C fragment is twisted by 17.0 (2)°, while the terminal C—C bonds are almost perpendicular to the CNC plane.

In the crystal structure the molecules are connected by strong intermolecular O—H···O hydrogen bonds into tapes along the *y*-direction. The O—H bond is significantly elongated, to 1.07 (3)Å due to the formation of the hydrogen bond (*cf.* Fig. 2 b). The tapes are connected by relatively strong inter-tape C—H···O hydrogen bonds into the layers (Fig. 3). Some additional C—H···O interactions (Table 1) also play a role in the building of the crystal structure.

Experimental

A mixture of 3-aminobenzoic acid (1.37 g, 0.01 mol) and 4-(diethylamino)-2-hydroxybenzaldehyde (1.92 g, 0.01 mol) in 25 ml of absolute ethanol containing 2 drops of 4 *M* sulfuric acid was refluxed for about 5 h. On cooling, the separated solid was filtered and recrystallized from DMF (m.p.: 483–485 K). The expected product was $3-({(1E)-[4-(diethylamino)-2-hydroxyphenyl]methylene}amino)$ benzoic acid, but the obtained product was the tautomeric form $3-({(Z)-[4-(diethyl-amino)-6-oxocyclohexa-2,4-dien-1-ylidene]methyl} amino)$ benzoic acid. Analysis for $C_{18}H_{20}N_2O_3$: Found (Calculated): C: 69.12 (69.21); H: 6.38 (6.45); N: 8.90% (8.97%).

Refinement

The hydrogen atoms were located in the difference Fourier maps and refined as 'riding model'. Isotropic displacement parameters for hydrogen atoms were set at 1.2 (1.3 for methyl group) times the U_{eq} values of appropriate carrier atoms.

Figures

Fig. 1. Anisotropic displacement ellipsoids representation (50% probability level) of the molecule with the atom labelling scheme, iIntramolecular hydrogen bond is depicted in dashed line.

Fig. 2. Difference Fourier map slices calculated for a model without the hydrogen atoms involved in intramolecular hydrogen bonds: (*a*) H7, (*b*) H1A2 (Farrugia, 1999). Solid lines: positive values, dashed: negative; contour level: $0.04 \text{ e}\%\text{A}^{-3}^{-3}$.

Fig. 3. The hydrogen-bonded layer as seen approximately along the *c* axis. Symmetry codes: (i) $x_y y_z$ (ii) $x_y - 1 + y_z (iii) x_y + y_z (iv) 5/2 - x_y - 1/2 + y_y - 2/2 - z (v) 5/2 - x_y - 1/2 + y_y - 2/2 - z$.

3-[(Z)-(4-Diethylamino-6-oxocyclohexa-2,4-dien-1- ylidene)methylamino]benzoic acid

Crystal data	
$C_{18}H_{20}N_2O_3$	$F_{000} = 664$
$M_r = 312.36$	$D_{\rm x} = 1.314 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 5056 reflections
<i>a</i> = 9.0904 (13) Å	$\theta = 3-24^{\circ}$
b = 9.8993 (9) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 17.8208 (19) Å	T = 295 (1) K
$\beta = 100.068 \ (2)^{\circ}$	Block, purple

V = 1579.0 (3) Å³ Z = 4 $0.3\times0.2\times0.2~mm$

Data collection

KUMA KM4CCD four-circle diffractometer	3514 independent reflections
Radiation source: fine-focus sealed tube	2464 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.020$
Detector resolution: 8.1929 pixels mm ⁻¹	$\theta_{\text{max}} = 28.0^{\circ}$
T = 293(2) K	$\theta_{\min} = 2.4^{\circ}$
ω scan	$h = -11 \rightarrow 11$
Absorption correction: none	$k = -12 \rightarrow 12$
12993 measured reflections	<i>l</i> = −23→21

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.041$	$w = 1/[\sigma^2(F_o^2) + (0.063P)^2 + 0.4649P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.124$	$(\Delta/\sigma)_{\text{max}} = 0.003$
<i>S</i> = 0.98	$\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$
3514 reflections	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
283 parameters	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0026 (8)

Secondary atom site location: difference Fourier map

					. 07.
ractional atomic coordina	tos and isotropic	or aquivalant isoti	ronia displacaman	tnaramators	(14)
ucuonai aiomic cooraina	es una isorropic ()) equivaleni isoli	obic aispiacemen	<i>i Durumeiers</i>	(A)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	1.03151 (16)	0.06899 (14)	1.12525 (8)	0.0326 (3)
C1A	1.00497 (17)	-0.07858 (14)	1.10991 (8)	0.0353 (3)
O1A1	1.09883 (14)	-0.16365 (11)	1.13287 (7)	0.0535 (3)
O1A2	0.87299 (13)	-0.10532 (11)	1.07198 (7)	0.0509 (3)
H1A2	0.850 (3)	-0.211 (3)	1.0667 (14)	0.098 (8)*
C2	0.94453 (17)	0.16506 (14)	1.08096 (8)	0.0330 (3)
H2	0.8663 (17)	0.1354 (16)	1.0377 (9)	0.035 (4)*
C3	0.96859 (17)	0.30147 (14)	1.09759 (8)	0.0347 (3)
C4	1.07595 (18)	0.34076 (15)	1.15860 (9)	0.0401 (4)
H4	1.0907 (18)	0.4382 (18)	1.1696 (9)	0.043 (4)*
C5	1.16149 (19)	0.24488 (17)	1.20297 (9)	0.0432 (4)
Н5	1.234 (2)	0.2745 (18)	1.2469 (10)	0.050 (5)*
C6	1.14098 (17)	0.10890 (16)	1.18570 (9)	0.0388 (3)

H6	1.2029 (19)	0.0408 (19)	1.2189 (10)	0.048 (5)*
N7	0.88185 (16)	0.40373 (12)	1.05574 (7)	0.0401 (3)
H7	0.887 (2)	0.489 (2)	1.0747 (11)	0.065 (6)*
C8	0.78879 (19)	0.39282 (15)	0.99049 (9)	0.0411 (4)
H8	0.7807 (19)	0.3078 (19)	0.9646 (10)	0.051 (5)*
C9	0.70296 (19)	0.49992 (14)	0.95604 (9)	0.0398 (4)
C10	0.71045 (18)	0.63293 (14)	0.99024 (8)	0.0372 (3)
O10	0.80433 (15)	0.65435 (10)	1.05372 (6)	0.0485 (3)
C11	0.62075 (19)	0.73538 (15)	0.95329 (9)	0.0392 (4)
H11	0.6353 (18)	0.8253 (17)	0.9767 (9)	0.041 (4)*
C12	0.53163 (17)	0.71697 (15)	0.88196 (9)	0.0388 (4)
C13	0.5272 (2)	0.58514 (17)	0.84767 (10)	0.0482 (4)
H13	0.466 (2)	0.5678 (18)	0.7969 (11)	0.054 (5)*
C14	0.6085 (2)	0.48282 (16)	0.88451 (10)	0.0482 (4)
H14	0.602 (2)	0.392 (2)	0.8607 (10)	0.059 (5)*
N15	0.45111 (16)	0.82021 (13)	0.84509 (8)	0.0449 (3)
C16	0.3912 (2)	0.8173 (2)	0.76261 (10)	0.0495 (4)
H16A	0.457 (2)	0.7599 (18)	0.7356 (10)	0.054 (4)*
H16B	0.394 (2)	0.908 (2)	0.7398 (10)	0.054 (4)*
C17	0.2318 (2)	0.7704 (3)	0.74366 (13)	0.0670 (6)
H17A	0.228 (3)	0.675 (3)	0.7658 (15)	0.098 (5)*
H17B	0.200 (3)	0.773 (3)	0.6867 (16)	0.098 (5)*
H17C	0.161 (3)	0.833 (3)	0.7715 (15)	0.098 (5)*
C18	0.4280 (2)	0.94628 (17)	0.88460 (10)	0.0442 (4)
H18A	0.4192 (18)	0.9237 (17)	0.9378 (10)	0.045 (3)*
H18B	0.334 (2)	0.9777 (17)	0.8604 (10)	0.045 (3)*
C19	0.5467 (2)	1.05246 (19)	0.88190 (13)	0.0552 (5)
H19A	0.647 (2)	1.021 (2)	0.9066 (12)	0.071 (4)*
H19B	0.523 (2)	1.138 (2)	0.9093 (12)	0.071 (4)*
H19C	0.549 (2)	1.075 (2)	0.8283 (13)	0.071 (4)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0348 (8)	0.0296 (7)	0.0333 (7)	0.0018 (6)	0.0059 (6)	0.0005 (6)
C1A	0.0403 (8)	0.0294 (7)	0.0354 (7)	0.0035 (6)	0.0047 (6)	0.0014 (6)
O1A1	0.0530 (7)	0.0334 (6)	0.0680 (8)	0.0117 (5)	-0.0068 (6)	0.0036 (5)
O1A2	0.0482 (7)	0.0247 (6)	0.0722 (8)	0.0033 (5)	-0.0105 (6)	-0.0060 (5)
C2	0.0366 (8)	0.0272 (7)	0.0338 (7)	-0.0008 (6)	0.0021 (6)	-0.0013 (5)
C3	0.0417 (8)	0.0271 (7)	0.0361 (7)	-0.0003 (6)	0.0090 (6)	0.0001 (6)
C4	0.0453 (9)	0.0298 (8)	0.0445 (9)	-0.0059 (6)	0.0061 (7)	-0.0067 (6)
C5	0.0408 (9)	0.0453 (9)	0.0410 (9)	-0.0053 (7)	0.0001 (7)	-0.0081 (7)
C6	0.0365 (8)	0.0386 (8)	0.0395 (8)	0.0031 (7)	0.0017 (6)	0.0005 (6)
N7	0.0538 (8)	0.0219 (6)	0.0418 (7)	0.0012 (6)	0.0009 (6)	0.0000 (5)
C8	0.0562 (10)	0.0224 (7)	0.0436 (8)	-0.0012 (7)	0.0053 (7)	-0.0022 (6)
C9	0.0525 (9)	0.0240 (7)	0.0405 (8)	-0.0010 (7)	0.0020 (7)	-0.0010 (6)
C10	0.0470 (9)	0.0256 (7)	0.0371 (8)	-0.0022 (6)	0.0022 (7)	-0.0021 (6)
O10	0.0707 (8)	0.0234 (5)	0.0433 (6)	0.0011 (5)	-0.0131 (6)	-0.0034 (4)

C11	0.0502 (9)	0.0243 (7)	0.0407 (8)	0.0022 (6)	0.0009 (7)	-0.0047 (6)
C12	0.0407 (9)	0.0317 (7)	0.0423 (8)	0.0012 (6)	0.0021 (7)	-0.0018 (6)
C13	0.0555 (11)	0.0379 (9)	0.0449 (9)	-0.0005 (8)	-0.0087 (8)	-0.0082 (7)
C14	0.0636 (11)	0.0276 (8)	0.0489 (9)	-0.0003 (7)	-0.0026 (8)	-0.0076 (7)
N15	0.0495 (8)	0.0375 (7)	0.0436 (7)	0.0080 (6)	-0.0031 (6)	-0.0014 (6)
C16	0.0528 (11)	0.0497 (10)	0.0452 (9)	0.0063 (8)	0.0059 (8)	0.0031 (8)
C17	0.0530 (12)	0.0885 (17)	0.0554 (12)	0.0000 (11)	-0.0018 (10)	-0.0032 (11)
C18	0.0447 (10)	0.0390 (8)	0.0480 (9)	0.0116 (7)	0.0058 (8)	0.0012 (7)
C19	0.0618 (12)	0.0410 (10)	0.0636 (12)	0.0016 (9)	0.0128 (10)	-0.0003 (9)
Geometric paran	neters (Å, °)					
C1—C6		1 390 (2)	C10–	-C11	1 39	3 (2)
C1 - C2		1 391 (2)	C11-	-C12	1 39	5 (2) 5 (2)
C1 - C1A		1 498 (2)	C11-	-H11	0.98	2(17)
C1A = 01A1		1.190(2) 1.2177(18)	C12-	-N15	1 35	78 (19)
$C1A = 01A^2$		1 2972 (19)	C12	-C13	1.55	9(2)
$01A^2$ —H1A2		1.2972(19)	C12	-C14	1.15	4 (2)
$C^2 - C^3$		1.07(3) 1 392(2)	C13	-H13	0.99	1(2)
С2—Н2		0.998(16)	C14	_H14	1.00	(2)
$C_3 - C_4$		1 384 (2)	N15-	C18	1.00	(2) 6 (2)
C3—N7		1.301(2) 1.4132(19)	N15-	-C16	1.47	6 (2)
C4—C5		1.384 (2)	C16-	-C17	1.50	3 (3)
C4—H4		0.989(17)	C16-	-H16A	1.00	4 (19)
C5—C6		1.386 (2)	C16–	-H16B	0.99	0 (19)
С5—Н5		0.975 (18)	C17–	-H17A	1.03	(3)
С6—Н6		1.002 (18)	C17–	-H17B	1.01	(3)
N7—C8		1.317 (2)	C17–	-H17C	1.07	(3)
N7—H7		0.91 (2)	C18–	-C19	1.51	3 (3)
C8—C9		1.394 (2)	C18–	-H18A	0.99	0 (18)
С8—Н8		0.956 (19)	C18–	-H18B	0.94	2 (18)
C9—C14		1.417 (2)	C19–	-H19A	0.99	(2)
C9—C10		1.448 (2)	C19–	-H19B	1.02	(2)
C10—O10		1.3097 (18)	C19–	-H19C	0.99	(2)
C6—C1—C2		120.30 (13)	N15-	C12C11	121.	38 (14)
C6—C1—C1A		119.30 (13)	N15-	C12C13	120.	31 (14)
C2-C1-C1A		120.38 (13)	C11–	-C12-C13	118.	31 (14)
01A1-C1A-01	A2	124.32 (14)	C14-	-C13-C12	120.	03 (15)
01A1-C1A-C1		122.15 (14)	C14-	C13H13	119.	0(11)
O1A2—C1A—C1		113.51 (13)	C12-	C13H13	120.	9 (11)
C1A-01A2-H1	A2	113.4 (13)	C13–	C14C9	122.	70 (15)
C1—C2—C3		119.34 (14)	C13–	C14H14	119.	1 (11)
С1—С2—Н2		119.7 (9)	С9—	C14—H14	118.	2 (11)
С3—С2—Н2		121.0 (9)	C12-	-N15-C18	121.	24 (13)
C4—C3—C2		120.21 (14)	C12-	-N15-C16	122.	74 (14)
C4—C3—N7		117.72 (13)	C18–	–N15—C16	115.	87 (13)
C2—C3—N7		122.02 (14)	N15–	C16C17	113.	77 (16)
C3—C4—C5		120.31 (14)	N15–	C16H16A	110.	0 (10)
С3—С4—Н4		118.8 (9)	C17–	-C16-H16A	110.	3 (10)

С5—С4—Н4	120.8 (10)	N15-C16-H16B		111.0 (11)
C4—C5—C6	119.92 (15)	C17—C16—H16B		106.3 (11)
С4—С5—Н5	119.0 (11)	H16A—C16—H16B		105.0 (15)
С6—С5—Н5	121.0 (11)	C16-C17-H17A		106.9 (15)
C5—C6—C1	119.89 (15)	C16-C17-H17B		108.2 (15)
С5—С6—Н6	118.8 (10)	H17A—C17—H17B		113 (2)
С1—С6—Н6	121.2 (10)	C16—C17—H17C		110.5 (14)
C8—N7—C3	128.32 (13)	H17A—C17—H17C		107 (2)
C8—N7—H7	113.0 (13)	H17B—C17—H17C		112 (2)
C3—N7—H7	118.7 (13)	N15-C18-C19		114.44 (15)
N7—C8—C9	123.38 (14)	N15-C18-H18A		108.1 (10)
N7—C8—H8	118.8 (11)	C19—C18—H18A		111.4 (10)
С9—С8—Н8	117.8 (11)	N15-C18-H18B		104.8 (11)
C8—C9—C14	120.66 (14)	C19—C18—H18B		110.6 (11)
C8—C9—C10	121.66 (14)	H18A—C18—H18B		107.1 (14)
C14—C9—C10	117.65 (14)	C18—C19—H19A		111.7 (13)
O10-C10-C11	121.99 (13)	C18—C19—H19B		110.3 (12)
O10—C10—C9	119.11 (13)	H19A—C19—H19B		107.8 (18)
C11—C10—C9	118.86 (14)	C18—C19—H19C		109.2 (13)
C10-C11-C12	122.32 (13)	H19A—C19—H19C		109.2 (17)
C10-C11-H11	115.8 (10)	H19B—C19—H19C		108.5 (17)
C12—C11—H11	121.3 (9)			
C6—C1—C1A—O1A1	-21.1 (2)	C14—C9—C10—O10		-175.35 (15)
C2-C1-C1A-O1A1	160.84 (14)	C8—C9—C10—C11		-179.40(15)
C6—C1—C1A—O1A2	157.39 (14)	C14—C9—C10—C11		2.7 (2)
C2-C1-C1A-O1A2	-20.7 (2)	O10-C10-C11-C12		173.43 (15)
C6—C1—C2—C3	0.2 (2)	C9-C10-C11-C12		-4.5 (2)
C1A—C1—C2—C3	178.28 (13)	C10-C11-C12-N15		-176.43 (16)
C1—C2—C3—C4	-1.3 (2)	C10-C11-C12-C13		3.3 (3)
C1—C2—C3—N7	-178.63 (13)	N15-C12-C13-C14		179.57 (17)
C2—C3—C4—C5	0.8 (2)	C11—C12—C13—C14		-0.1 (3)
N7—C3—C4—C5	178.23 (14)	C12—C13—C14—C9		-1.6 (3)
C3—C4—C5—C6	0.8 (2)	C8—C9—C14—C13		-177.61 (18)
C4—C5—C6—C1	-1.9 (2)	C10-C9-C14-C13		0.3 (3)
C2—C1—C6—C5	1.4 (2)	C11—C12—N15—C18		-13.4 (2)
C1A—C1—C6—C5	-176.68 (14)	C13—C12—N15—C18		166.90 (16)
C4—C3—N7—C8	170.02 (16)	C11—C12—N15—C16		162.02 (16)
C2—C3—N7—C8	-12.6 (3)	C13—C12—N15—C16		-17.7 (3)
C3—N7—C8—C9	176.68 (15)	C12—N15—C16—C17		95.6 (2)
N7—C8—C9—C14	177.89 (16)	C18—N15—C16—C17		-88.7 (2)
N7—C8—C9—C10	0.0 (3)	C12—N15—C18—C19		89.8 (2)
C8—C9—C10—O10	2.6 (2)	C16—N15—C18—C19		-86.0 (2)
Hydrogen-bond geometry (Å, °)				
D—H····A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N7—H7…O10	0.91 (2)	1.81 (2)	2.578 (2)	140 (2)

1.07 (3)1.40 (3)2.467 (1)173 (2)

01A2—H1A2…O10ⁱ

C5—H5····O1A1 ⁱⁱ	0.98 (2)	2.48 (2)	3.449 (2)	174 (2)
C8—H8…O1A1 ⁱⁱⁱ	0.96 (2)	2.63 (2)	3.436 (2)	142 (1)
C11—H11···O1A2 ^{iv}	0.98 (2)	2.60 (2)	3.244 (2)	124 (1)
$C16$ — $H16A$ ···O1 $A1^{v}$	1.00 (2)	2.60 (2)	3.570 (2)	163 (1)

Symmetry codes: (i) x, y-1, z; (ii) -x+5/2, y+1/2, -z+5/2; (iii) -x+2, -y, -z+2; (iv) x, y+1, z; (v) x-1/2, -y+1/2, z-1/2.

